40 research outputs found

    Analysis of Eye-Tracking Data with Regards to the Complexity of Flight Deck Information Automation and Management - Inattentional Blindness, System State Awareness, and EFB Usage

    Get PDF
    In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems, and the procedures for interacting with these systems, appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it can place a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. Evidence supporting this observation is becoming widespread, yet has been largely anecdotal or the result of subjective analysis. One way to gain more insight into this issue is through experimentation using more objective measures or indicators. This study utilizes and analyzes eye-tracking data obtained during a high-fidelity flight simulation study wherein many of the complexities of current flight decks, as well as those planned for the next generation air transportation system (NextGen), were emulated. The following paper presents the findings of this study with a focus on electronic flight bag (EFB) usage, system state awareness (SSA) and events involving suspected inattentional blindness (IB)

    Testing Enabling Technologies for Safe UAS Urban Operations

    Get PDF
    A set of more than 100 flight operations were conducted at NASA Langley Research Center using small UAS (sUAS) to demonstrate, test, and evaluate a set of technologies and an overarching air-ground system concept aimed at enabling safety. The research vehicle was tracked continuously during nominal traversal of planned flight paths while autonomously operating over moderately populated land. For selected flights, off-nominal risks were introduced, including vehicle-to-vehicle (V2V) encounters. Three contingency maneuvers were demonstrated that provide safe responses. These maneuvers made use of an integrated air/ground platform and two on-board autonomous capabilities. Flight data was monitored and recorded with multiple ground systems and was forwarded in real time to a UAS traffic management (UTM) server for airspace coordination and supervision

    Analysis of Eye-Tracking Data During Conditions Conducive to Loss of Airplane State Awareness

    Get PDF
    In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems and of the procedures for interacting with them appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it typically places a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. This can be problematic as too much information and/or ineffective provisions of information can potentially overwhelm and/or confuse pilots, and as a result, increase the likelihood of loss of airplane state awareness (ASA). One way to gain more insight into this issue is through experimentation using more objective measures. This study summarizes an analysis of eye-tracking data obtained during a high-fidelity flight simulation study that included most of the complexities of current flight decks, as well as several planned for the next generation air transportation system. Multiple analyses were performed to understand how the 22 participating airline pilots were observing ASA-related information provided during different stages of flights and in response to specific events within these stages. Also, study findings are compared to data presented in similar previous studies to assess trends or common themes regarding how airline crews apply visual attention in complex flight deck and operational environments

    Safeguard: Progress and Test Results for a Reliable Independent On-Board Safety Net for UAS

    Get PDF
    As demands increase to use unmanned aircraft systems (UAS) for a broad spectrum of commercial applications, regulatory authorities are examining how to safely integrate them without compromising safety or disrupting traditional airspace operations. For small UAS, several operational rules have been established; e.g., do not operate beyond visual line-of-sight, do not fly within five miles of a commercial airport, do not fly above 400 feet above ground level. Enforcing these rules is challenging for UAS, as evidenced by the number of incident reports received by the Federal Aviation Administration (FAA). This paper reviews the development of an onboard system - Safeguard - designed to monitor and enforce conformance to a set of operational rules defined prior to flight (e.g., geospatial stay-out or stay-in regions, speed limits, and altitude constraints). Unlike typical geofencing or geo-limitation functions, Safeguard operates independently of the off-the-shelf UAS autopilot and is designed in a way that can be realized by a small set of verifiable functions to simplify compliance with existing standards for safety-critical systems (e.g. for spacecraft and manned commercial transportation aircraft systems). A framework is described that decouples the system from any other devices on the UAS as well as introduces complementary positioning source(s) for applications that require integrity and availability beyond what can be provided by the Global Positioning System (GPS). This paper summarizes the progress and test results for Safeguard research and development since presentation of the design concept at the 35th Digital Avionics Systems Conference (DASC '16). Significant accomplishments include completion of software verification and validation in accordance with NASA standards for spacecraft systems (to Class B), development of improved hardware prototypes, development of a simulation platform that allows for hardware-in-the-loop testing and fast-time Monte Carlo evaluations, and flight testing on multiple air vehicles. Integration testing with NASA's UAS Traffic Management (UTM) service-oriented architecture was also demonstrated

    UAS Autonomous Hazard Mitigation through Assured Compliance with Conformance Criteria

    Get PDF
    The behavior of a drone depends on the integrity of the data it uses and the reliability of the avionics systems that process that data to affect the operation of the aircraft. Commercial unmanned aircraft systems frequently rely on commercial-off-the-shelf and open source avionics components and data sources whose reliability and integrity are not easily assured. To mitigate failure events for aircraft that do not comply with conventional aviation safety standards, operational limitations are typically prescribed by regulators. Part 107 of the Federal Aviation Regulations serves as a good example of operational limitations that mitigate risk for small unmanned aircraft systems. These limitations, however, restrict growth possibilities for the industry. Any reasonable path toward achieving routine operation of all types of drones will have to address the need for assurance of avionics systems, especially their software. This paper discusses the possibility of strategically using assured systems as a stepping stone to routine operation of drones. A specimen system for assured geofencing, called Safeguard, is described as an example of such a stepping stone

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    Predator Effects in Predator-Free Space: The Remote Effects of Predators on Prey

    Get PDF
    Predators can have remote effects on prey populations that are connected by migration (i.e. prey metapopulations) because predator-mediated changes in prey behavior and abundance effectively transmit the impact of predators into predator-free prey populations. Behavioral changes in prey that might give rise to remote effects are altered rates of migration or activity in the presence of predation risk (called non-consumptive effects, fear- or μ-driven effects, and risk effects). Changes in prey abundance that may result in remote effects arise from changes in prey density due to direct predation (i.e. consumptive effects, also called N-driven effects and predation effects). Remote effects provide a different perspective on both predator-prey interactions and spatial subsidies, illustrating how the interplay among space, time, behavior, and consumption generates emergent spatial dynamics in places where we might not expect them. We describe how strong remote effects of predators may essentially generate “remote control” over the dynamics of local populations, alter the persistence of metapopulations, shift the importance of particular paradigms of metacommunity structure, alter spatial subsidies, and affect evolutionary dynamics. We suggest how experiments might document remote effects and predict that remote effects will be an important component of prey dynamics under several common scenarios: when predators induce large changes in prey dispersal behavior, when predators dramatically reduce the number of prey available to disperse, when prey movement dynamics occur over greater distances or shorter timescales than predator movement, and when prey abundance is not already limited by competitors or conspecifics

    Amphibians in Zootaxa: 20 years documenting the global diversity of frogs, salamanders, and caecilians

    Get PDF
    Zootaxa is a mega-journal that since its inception, 20 years ago, has contributed to the documentation of the planet?s biodiversity. Its role concerning terrestrial vertebrates has been crucial especially for amphibians, which are the most threatened class of vertebrates. As current editors of the Amphibia section, we reviewed the state of knowledge of taxonomic publications on amphibians over the last two decades (from 2001 to 2020). Our review reveals that 2,533 frogs, 259 salamanders, and 55 caecilians have been named in these 20 years, mainly in the tropical regions of South America, Asia, and Africa. More than half (57%) of these species descriptions were published in only 10 journals. At least 827 species of the new amphibians (29% of the total) were described in Zootaxa. This mega-journal has served also as a place of publication for monographs and systematic reviews, in addition to short articles documenting the vocalizations of anurans and the morphology of embryos and larvae. Its efficient evaluation process, the freedom of manuscript length, including full-color figures, and free of cost for the authors, has made Zootaxa a favorite for amphibian researchers. In an era of accelerating rates of biodiversity loss, documenting, describing, naming, and proposing evolutionary scenarios for species is, more than ever, an urgent task.Fil: Rivera Correa, Mauricio. Universidad de Antioquia; ColombiaFil: Baldo, Juan Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Vera Candioti, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Goyannes Dill Orrico, Victor. Universidade Estadual de Santa Cruz; BrasilFil: Blackburn, David C.. University Of Florida. Florida Museum Of History; Estados UnidosFil: Castroviejo Fisher, Santiago. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Chan, Kin Onn. National University of Singapore; SingapurFil: Gambale, Priscilla. Universidade Federal de Goiás; BrasilFil: Gower, David J.. Natural History Museum; Reino UnidoFil: Quah, Evan S. H.. National University of Singapore; SingapurFil: Rowley, Jodi J. L.. University of New South Wales; AustraliaFil: Twomey, Evan. Goethe Universitat Frankfurt; AlemaniaFil: Vences, Miguel. Technische Universitat Carolo Wilhelmina Zu Braunschweig.; Alemani

    REVISITING THE CLASSICS: CONSIDERING NONCONSUMPTIVE EFFECTS IN TEXTBOOK EXAMPLES OF PREDATOR–PREY INTERACTIONS

    Get PDF
    Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator–prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx–hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption‐based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator‐mediated prey coexistence. Revisiting classic studies enriches our understanding of predator–prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator–prey models based on consumption, and to compare the relative magnitude of consumptive and NCE of predators
    corecore